If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-28x=16
We move all terms to the left:
10x^2-28x-(16)=0
a = 10; b = -28; c = -16;
Δ = b2-4ac
Δ = -282-4·10·(-16)
Δ = 1424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1424}=\sqrt{16*89}=\sqrt{16}*\sqrt{89}=4\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-4\sqrt{89}}{2*10}=\frac{28-4\sqrt{89}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+4\sqrt{89}}{2*10}=\frac{28+4\sqrt{89}}{20} $
| 14x+5x=100000 | | 5c+6=8c | | 8=6+5c | | 2x/3+5=5x/2-6 | | 0.15x-2.04=0.35x+0.03 | | 1-8-x÷3=x | | 2*3.14*x=200 | | -7x-63=14x-35 | | x/(x+25)=0.02 | | T=1,8t+32 | | (1/2)x+3=(4/3)x-2 | | 3(5x-6)-123=180 | | -7(-8x-6)-294=180 | | 3x+450=-3x-450 | | -8(7-2x)-184=180 | | -723(5x-4)=180 | | 9x-8x+7=8 | | -5(-3x-1)-70=180 | | -54-4(2x+3)-2=180 | | x(-2)^2-(x-1)^2=-2x+1 | | 5x-65=15x+95 | | 8x+2+70+60=140 | | 55+x+74+54=140 | | 89+5x-7+14+1=140 | | 2x-14=-46 | | y2-42y+43=0 | | 0=2x2+26x-204 | | 0=x2+13x-103 | | y2-37y+342=0 | | 8x+21+16=180 | | 3x+55=2×+10 | | 11y-14=9y+4 |